• Users Online: 421
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2021  |  Volume : 29  |  Issue : 4  |  Page : 239-249

Ultrasonic attenuation of an agar, silicon dioxide, and evaporated milk gel phantom


1 MEDSONIC LTD, Limassol, Cyprus
2 Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
3 Medical Physics Sector, State Health Services Organization, Nicosia General Hospital, Nicosia, Cyprus, Cyprus
4 Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol, Cyprus

Correspondence Address:
Prof. Christakis Damianou
Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, 30 Archbishop Kyprianou Street, 3036 Limassol
Cyprus
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/JMU.JMU_145_20

Rights and Permissions

Background: It has been demonstrated that agar-based gel phantoms can emulate the acoustic parameters of real tissues and are the most commonly used tissue-mimicking materials for high-intensity focused ultrasound applications. The following study presents ultrasonic attenuation measurements of agar-based phantoms with different concentrations of additives (percent of agar, silicon dioxide and evaporated milk) in an effort of matching the material's acoustic property as close as possible to human tissues. Methods: Nine different agar-based phantoms with various amounts of agar, silicon dioxide, and evaporated milk were prepared. Attenuation measurements of the samples were conducted using the through-transmission immersion techniques. Results: The ultrasonic attenuation coefficient of the agar-based phantoms varied in the range of 0.30–1.49 dB/cm-MHz. The attenuation was found to increase in proportion to the concentration of agar and evaporated milk. Silicon dioxide was found to significantly contribute to the attenuation coefficient up to 4% weight to volume (w/v) concentration. Conclusion: The acoustic attenuation coefficient of agar-based phantoms can be adjusted according to the tissue of interest in the range of animal and human tissues by the proper selection of agar, silicon dioxide, and evaporated milk.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2773    
    Printed77    
    Emailed0    
    PDF Downloaded253    
    Comments [Add]    

Recommend this journal