• Users Online: 162
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2018  |  Volume : 26  |  Issue : 1  |  Page : 24-30

High-intensity focused ultrasound thermal lesion detection using entropy imaging of ultrasound radio frequency signal time series


1 Department of Biomedical Engineering, School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
2 Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 Department of Physics, Ryerson University; Keenan Research Centre for Biomedical Science, Institute for Biomedical Engineering, Science and Technology, St. Michael's Hospital, Toronto, ON, Canada

Correspondence Address:
Dr. Hamid Behnam
Department of Biomedical Engineering, School of Electrical Engineering, Iran University of Science and Technology, Tehran 16844
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/JMU.JMU_3_17

Get Permissions

Background: During the past few decades, high-intensity focused ultrasound (HIFU) modality has been gaining surging interest in various therapeutic applications such as non- or minimally-invasive cancer treatment. Among other attributes, robust and real-time HIFU treatment monitoring and lesion detection have become essential issues for successful clinical acceptance of the modality. More recently, ultrasound radio frequency (RF) time series imaging has been studied by a number of researchers. Materials and Methods: The objective of this study is to investigate the applicability of entropy parameter of RF time series of ultrasound backscattered signals, a. k. a. Entropy imaging, toward HIFU thermal lesion detection. To this end, five fresh ex vivo porcine muscle tissue samples were exposed to HIFU exposures with total acoustic powers ranging from 30 to 110 Watts. The contrast-to-speckle ratio (CSR) values of the entropy images and their corresponding B-mode images of pre-, during- and post-HIFU exposure for each acoustic power were calculated. Results: The novelty of this study is the use of Entropy parameter on ultrasound RF time series for the first time. Statistically significant differences were obtained between the CSR values for the B mode and entropy images at various acoustic powers. In case of 110 Watt, a CSR value 3.4 times higher than B-mode images was accomplished using the proposed method. Furthermore, the proposed method is compared with the scaling parameter of Nakagami imaging and same data which are used in this study. Conclusion: Entropy has the potential for using as an imaging parameter for differentiating lesions in HIFU surgery.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2169    
    Printed149    
    Emailed0    
    PDF Downloaded234    
    Comments [Add]    
    Cited by others 1    

Recommend this journal